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The X-ray scattering produced by a distribution of two-dimensional lattices with preferred orientation, 
a problem which arises e.g. in the study of anisotropic structures of non-graphitic carbons, is given a 
rigorous theoretical treatment for infinite and perfect lattices and approximations are given for finite 
and imperfect lattices as well as for structures with partial positional correlations. As an example of 
the application, the observed intensity distributions of (hk) interferences of a highly oriented carbon 
fiber are compared with calculated intensity distributions. 

1. Introduction 

The intensity diffracted by a two-dimensional lattice 
is represented in reciprocal space by a periodic array 
of parallel rod-like intensity distributions. A random 
distribution of such lattices produces the asymmetric 
interference lines first discussed by yon Laue (1932) for 
infinitely large and perfect lattices, for which one ob- 
tains for given s~ 

or 

1 
I(s)= 2zs~/(s2-4) 

=0  

1 
I(s) = Re-2~s]/(s i -  s~) '  

~ r s > s h  

~ r s < s n  

(1) 

where I(s) is the intensity as a function of the absolute 
value s of the reciprocal space vector s ( s=2  sin 0/2) 
and sh is the distance of the rod of index h(= hk) from 
the origin of reciprocal space; Re means the real part. 
The intensity along the rod is considered to be unity. 
Warren (1941), Wilson (1949), Brindley & M6ring 
(1951), Warren & Bodenstein (1966) and Ruland 
(1967a) have treated the problem of random distribu- 
tions of two-dimensional lattices of finite size. 

The present paper deals with non-random distribu- 
tions of two-dimensional lattices, a problem which 

• * Research sponsored in part by a United States Air 
Force Subcontract under Union Carbide Corporation's Prime 
Contract AF 33(615)-2760. 

arises e.g. in non-graphitic carbon structures with pre- 
ferred orientation. The problem has been treated by 
Guentert & Cvikevich (1964) for a special case of the 
orientation function ([cosn~0l) and a unique direction 
in reciprocal space (perpendicular to the axis of cylin- 
drical symmetry of the preferred orientation). The pur- 
pose of this paper is to give a general treatment of the 
problem. 

2. Theoretical 

2.1 It is required to find the Fourier transform of an 
assembly of two-dimensional regular arrays (planes). 
It is assumed that there is no preferred orientation 
within the plane, that the angular distribution of the 
perpendiculars to the plane (the orientation distribu- 
tion) against a fixed direction ('primary axis') is given 
by g(fl) but that there is no preferred orientation of 
the perpendiculars to the plane around the primary 
axis (cylindrical symmetry). The primary axis may be 
the fiber axis in the case of fibers or the perpendicular 
to the plane of deposition in the case of pyrolytic car- 
bons, for example. 

The Fourier transform of a two-dimensional regular 
array of points is a set of parallel rods, each of which 
can be represented by 

I(s) = 6(S12-- Sh) (2) 

where S12 is the projection of s perpendicular to the 
rod. If there is no preferential orientation within the 
plane each rod goes over into a cylinder and the inten- 
sity distribution is 



94 THE E F F E C T  OF P R E F E R R E D  O R I E N T A T I O N  

1 1 
O(s sin z -  sn) ,  I(s) = ~ 3(sx2- sn) = 2zcsn 

where z is the angle between the vector s and the axis 
of the cylinder. We take the primary axis as the polar 
axis of the set of spherical coordinates s, 9, ~u, and 
use a set of Euler angles ct, fl, y as defined by Margenau 
& Murphy (1956) to characterize the orientation of the 
cylinder. The angle e is counted from the plane con- 
taining the primary axis and s; the angle y does not 
appear in the expressions owing to the absence of pre- 
ferred orientation within the planes. Then (Fig. 1) 

cos z=cosf l  cos ~0+sin fl sin ~0 cos ~. 

The distribution of the planes around the primary 
axis is taken into account by integrating over ~, the 
orientation distribution of the cylinder axes by multi- 
plying by g(fl) sin fl and integrating over fl, so that the 
intensity is given by 

1 
l ( s )=  ~ l0 1"/2 O(s sin z-sn)g(fl) sin fldflda. 

d --r~/2 

The colatitude fl goes from 0 to ~, the azimuth a only 
over half the circle so as not to count the same direc- 
tion twice. For further development it is convenient to 
replace a and fl by z and r/ as integration variables, 
where r/ is the angle between the plane containing s 
and the primary axis and the plane containing s and 
the cylinder axis, as shown in Fig. 1. The Jacobean 
O(~,fl)/~(z,r/) can be written 

p 
_ = ar/ • a(z,r/) a(z,r/) 

-a(z,/0 

From the above expression for cos z 

( ~ )  sinz 
p-- sin f l s in~  sin 

and from the analogous equation 

cos fl = cos 9 cos z + sin ~o sin z cos 1/ 

(Or/) _ sinfl 
~fl , sin ~0 sin z sin r/ 

so that the Jacobean is sin r/sin fl and 

I (s)= l f i '~dr/l~(ssinz-s~)g(fl)sinzdz 
2z~sn 

We introduce sin a = sn/s and note that 

I a ( y -  a)f(x)dx = f(a) 
' 

then 

I (s)= - -  1 sin tr (fl)dr/= 
. . . . . .  

2rcssn cos tr 

 ¢(s2_45 

The orientation distribution g(fl) is so normalized 
that 

or 

g(fl) sin fldfl= n 

so that if the distribution is constant over the surface 
of the sphere, g(fl)= 1/(2n), and with this value we ob- 
tain the well-known Laue expression (1). It is con- 
venient to express the effect of the orientation distribu- 
tion on the intensity distribution by writing 

where 

1 
l ( s )=  2rcs~/(sz-s2 ) • F(tr,~o), 

F(a, ~o)= 2 ISg(fl)dr/ (4) 

is a function of a (or stds) and ~0 and 

cos fl = cos ~0 cos a + sin ~0 sin a cos r/. (5) 

For ~0 = 0 equation (4) reduces to 

F(tr, 0)-- 2~zg(tr). 

If there is no cylindrical symmetry about the primary 
axis the orientation distribution is a function not only 
of fl but of c~ as well and g(fl) must be replaced by 
g(~,fl), suitably normalized; the angle c~ can be express- 
ed in terms of the other angles by the formulae of 
spherical trigonometry, Fig. 1. 

2.2 We can evaluate F(tr, tp) if g(fl) is represented by 
the Poisson kernel* (Ruland, 1967b) 

1 ]/q l + q  
g(fl)= 2~z artlai/q ( l + q ) i - 4 q c o s 2 f l '  (6) 

where it is more convenient to write ]/q/ar th]/q here 
and in what follows in the form ] / ( -  q)/arc tg ] / ( -  q) ifq 
is negative and g(fl)satisfies the normalization require- 
ment (3). If q=  1 or - 1 ,  g(fl) differs from zero only 
for f l=0  or ~/2, respectively; q = 0  gives the random 
distribution. 

The evaluation of F(a, ~0) reduces here to the evalua- 
tion of dr/ 

0 - ( 1 4  q ) 2  " 4 q  cos2/  ' 

which can be expressed in terms of integrals of the form 

dr/ . 

o l + q + l / q c o s f l '  
after substitution from (5) these are of the form 

0 a_+b cos r/' 

the value of which is x/],/(a 2 -  b2). 

* For the definition of the Poisson kernel see e.g. Carslaw 
(1930). 
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The result of the calculation is 

1/q (A2-B)~+A ~ 
F(°"~°) -a r th] /q  [ 2(AZ_B) ] ' 

where 
A = (1 + q)Z + 4q (cos29- sinZg), 
B = 16q(1 + q)ZcosZq~ cosZ¢. 

For ~o = 0 this reduces to 

F(¢ ,0)=  I/q l + q  
ar th ]/-q- (i4- q)2-- 74q c0s2~ - = 2z~g(G), 

(7) 

p r i m a r y  ax i s  

c y l i n d e r  ax i s  

Fig. 1. Geomet r ica l  relat ionships o f  s, p r imary  axis, and 
cylinder axis. 

for ~ = n/2 to 

- 
ar th l/q -[(1 + q)2_ 4q sin2o-] ~ " 

A computer program (ERA 508) has been written 
in Fortran for the IBM 1620 computer to evaluate 
F(o-,~0) from (7) for given values of q. Figs.2 and 3 
show the values obtained for q=0.8 and q=  -0 .8 ,  re- 
spectively, as functions of ~0 for a series of values of 
s/sh. These two values of q represent fairly narrow dis- 
tributions around ~0=0 and ~o=rc/2, respectively. The 
displacement of the maximum of F(o', ~0) and therefore 
of I(s) (since the Laue factor does not depend on ~0) 
is clearly shown. The exact position of the maximum 
in s-space can be computed by a program ERA 534 
and the points obtained have been plotted in Fig. 4 for 
a series of values of q. For a given value of s the maxi- 
mum of the intensity as a function of ~0 lies at the point 
of intersection of the circle s = constant with the curve 
for the appropriate value of q. 

2.3 Guentert & Cvikevich (1964) have given an 
analytical expression for F(o',~0) if g(/7)=lcosnPl and 
~0 =g/2.  It is not difficult to evaluate F(o',~0) for the 
general case with this value of g(fl); substitution into 
(4), changing the integration variable by (5) and eval- 
uation of the integrals gives 

(;) 
k=0 

. . . . . . . . . . . . . . . .  • 

x (sin ~0 sin °)~ F ( k )  + 1t/ 

For the case treated by Guentert & Cvikevich the above 
expression consists of the term k=n, 21,/~sinno " 

3"0 

3 I -  i \ 1"7 

1"0 

1"3 Z 1"006 
1 "02 1 "1 1 "05 

o,l I I I I I I I I i ~  
0 ° 10 ° 20 ° 30 ° 40 ° 50 ° 60= 70" 80 ° 90 ° 

Fig.2.  F ( a , ¢ )  as funct ion  of  the angle ~ for Poisson  kernel with  q = 0 . 8  and  for  values of  s/sh indicated.  

A C 24A - 7 
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F[(n + 1)/2]/F(n/2+ 1), as given by the authors, except 
for the constant factor. For ~0 = 0 it reduces to 2n cosna. 

ff g(fl)= Isinnfll, an analytical expression can be ob- 
tained for F(a,~o) for even values of n, though it is 

rather involved, but for odd values of n (4) reduces 
to an elliptical integral and methods of numerical inte- 
gration appear to be more suitable whatever the value 
of n. 

F(a ,¢ )  

6 

1"0 

1 "05 3"0 
l ' u z /  ~ 1"1 

/ / ~ . ~ ~  1"3 1"7 

• . , I I I I I I l _  
907 0 ° 10 ~ 20" 30" 40 ° 50" 60" 70" 80* 

¢ 

Fig. 3. F(a, ~o) as funct ion  of  the angle rp for  Poisson kernel with q = - 0.8 and for  values o f  s/sh indicated.  

s cos ¢ 

1,5 

1 

0.5 

L 

1.0 
o. "x 0.5 I 

~ 0"6 0.81 

0"3 

-1  "0 

-0"3 -0 '4  -0"5 -0"6 

I I_... I I 
0 0 " 5  1 " 5  2 s s in  9 

Fig .  4. M a x i m a  o f  F(cr, ~p) f o r  cons tan t  s and  sh = 1 f o r  Po isson  ke rne l  w i t h  va lues o f  q i nd ica ted .  
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2.4 In the general case g(fl) can be represented as a 
Fourier-cosine series; since it is taken to be symmetrical 
about t =  re/2 only terms of even order appear: 

o o  

g(f l )= 27 Pn cos 2nil. 
n=O 

The treatment of this case is all the more interesting 
as the Fourier coefficients Pn are sometimes more 
easily accessible than the complete expression for g(fl) 
(Ruland, 1967/)). We have then 

i~co s oo F(tr, 9) = 2 X Pn 2nfldq = X PnFn(tr, 9) . 
n=0  n=0 

To obtain Fn(a, 9) we write 

cos 2nil= X (- 1)~K(n,k) cos2n-2kfl; 
k = 0  

[the K(n ,k )  appear as the coefficients of x 2n-21¢ in the 
Chebyshev polynomialt T2n(x)] and each power of 
cos2fl can be treated as in § 2.3. The result is ,(2,) 

Fn(tT,~0)=2~(- 1) n ~ ( -  1 ) t K ( n , n - l )  X 
1=0 1=0 2j 

× (~ / ) ( cos fpcos  a)2(l-J)(sin~o sin a/2) 21. (8) 

A computer program (ERA 545) has been written 
in the SPS language to compute Fn(a,~) for given 
values of a and ~ for n = 0 to 25; since there is con- 
siderable loss of significance due to the alternation of 
terms thirty significant digits are carried during the 
computations. 

"[" F o r  t h e  de f in i t ion  o f  C h e b y s h e v  p o l y n o m i a l s  see e.g. 
D u s c h e k  (1961).  

A second program (ERA 556) computes F(cr, ~0) for 
given values of Pn. The consistency of programs 508 
on the one hand and programs 545 and 556 on the 
other has been confirmed by computing F(~, ~0) for the 
Poisson kernel with the latter program with P0 = 1, 
Pn =2q  n, and an appropriate normalization factor. 

2.5 The expressions so far obtained are strictly valid 
only for infinitely large and perfect layer structures 
since the cross-section of the (hk) rod has been re- 
presented by a Dirac delta distribution. 

For finite and/or imperfect layers equation (2) has 
to be replaced by 

l (s )=1n(s12-sn)  (9) 

where In(s12) is the intensity distribution in the cross- 
section of the rod of index h (=hk) .  A treatment of 
the problem starting from this equation would, how- 
ever, be rather involved and it is thus of interest to 
formulate the problem in a slightly different way. As- 
suming sn to be in the direction of sz, equation (9) 
can be written in the form 

l(s)=[6(sa-sn)6(s2)].[ln(sa2). 6(s3)] (10) 

where • stands for convolution. Averaging over all 
orientations within the plane will cause most of the 
details of In in the s2 direction to vanish so that the 
result will be almost the same if (11) is written instead 
of (10), 

I(s) m [3(st - sn)3(s2)]*[{In }(sl)6(s2)6(s3)] , (11) 
where 

{In }(sl) = I~_oolh(s12)ds2 . 

In that case, one can also show that 
I 

I(s)6(s _~ 12-  sh)*Xh(s) (12) 

counter 

Focus cat~ 
• I s . 9- m o v e m e n t  

S 

So 

Fig. 5. Fibre equipment for diffractometer. 

A C 24A - 7* 
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is an acceptable approximation for (9), where I'h(S) is a 
spherically symmetrical distribution related to In by the 
definition 

c o  p -1-oo 

Taking (12) as the starting point, it is obvious that none 
of the operations of § 2.1 interfere with the function 
I~, and the final result is thus 

I(s,~o)-- [Re 1 ~o ] , I ~ , ( s ) ( 1 3 )  
2rcs l / (s2_ s~,} . F(tr, 

At this point it is of interest to recall that the func- 
tion F(cr, ~0) can be considered as varying slowly com- 
pared with the Laue factor, except for extremely nar- 
row orientation distributions [g(fl) tending towards 
&(fl) or a(fl-~/2)].  In all other cases equation (13) can 
thus be further simplified by the approximation 

I(s,(p) ~_ Ih(s),Re ~2~S~7(S~ -S-~) • F(tr,~p), 

which means that the Laue factor can be replaced by 
the line profile of the completely random arrangement 
of layers, Jn(s), giving 

I(s, rp)'~_Jn(s) • F(a,~o). (14) 

2.6 A further complication can occur in that the 
intensity along the rod is not constant, an effect which 
can be due e.g. to the partial ordering of adjacent layers. 
In this case equation (9) has to be replaced by 

/ (S)=~(S12--S/~ ) " G(s3) , (15) 

where G(s3) determines the intensity variations along 
the rod. Since I(s) is non-zero only for Slz=Sn, G(s3) 
can be written in the form 

G'(s)=a[/(s2-4)] 
and the result of the operations described in § 2.1 is thus 

a[1/(s2-4)l 
I(s,~0)= Re 2rcsl-/(s2_ s~)- " F(a, ~o) . 

If the intensity variation along the rod occurs to- 
gether with a non-negligible width of the cross-section 
of the rod, equation (9) has to be replaced by 

I(s)  = II~(Sl2- Sl~)G(s3) 

which, following the arguments given in § 2.5, can be 
approximated by 

I(S)=[~(S,2--Sn)*I'h(S)]" G(s3) • 

This expression can in its turn be approximated by 

I(s) ~ [&(s12- sn)" G(s3)l.I'n(s) 

provided that G is a slowly varying function as com- 
pared with I~,, an assumption which is justified in many 
practical cases. The operations described in § 2.1 then 
give 

/(s,~0)~_ [Re G'(s) F(o',~o) ] ,I'h(S) 
2z~Sl/(S z -  s~) 

from which one obtains the approximation 

I(s, ~o)~-Sn(s) • G[1/(sZ- s~)]F(a, ~o) 

if G'(s) and F(s, to) can be considered as slowly varying 
compared with the Laue form. 

3. Experimental 

An experimental check of the theoretical predictions 
has been made in the study of preferred orientation 
in a highly oriented carbon fiber. The measurements 
were carried out on a counter diffractometer using the 
scattering geometry shown in Fig. 5. In order to in- 
crease the intensity yield and simplify absorption cor- 
rections a great number of fibers are mounted parallel 
on a frame. The frame is fixed on a sample holder in 
such a way that the plane formed by the parallel fibers 
is perpendicular to the plane defined by So (the unit 
vector in the direction of the primary beam) and S 
(the unit vector in the direction of the observed scat- 
tering) and parallel to s. The latter condition is main- 
tained by the usual 0/20 ratio between the movement 
of the sample holder and the counter. The frame can 
be rotated within the plane formed by the fibers, the 
angle of rotation is equivalent to the angle ~0 as defined 
above. 

The distribution of layer normals was obtained by 
an analysis of circular scans on the 002 and 004 re- 
flexions which yields directly the Fourier coefficients 
Pn as discussed in § 2.4. From these coefficients values 
of F(a, ~0) were computed as functions of ~0 for s/sh = 1.1, 
thus outside the main interference ring, and the results 
were compared with measurements at the same s/sn 
value in the region of the (10) and (11) interferences. 
The result is shown in Fig. 6. The agreement between 
observed and calculated intensities is satisfactory out- 
side the region influenced by the 00l reflexions. The 
profile of the streak discussed in § 2.2 appears clearly. 

A comparison of observed and calculated intensities 
at smaller s/sn values shows systematic deviations 
which can be explained by a correlation between the 

norm 

1"4 ,. 

1"3 ., 

1"2 

1"1 

1"0 

0"9 

0"8 

o.7 // 
0"6 * , . . . . . . . .  

0 ° 100 2 0  ° 3 0  ° 4 0  ° 5 0  o 600 70 o 8 0 ° ~ 9 0  ° 

Fig. 6. Scattering diagram of carbon fibre with high preferred 
orientation as function of tp for s/sn = 1.1. Full line: computed 
curve; crosses: observed profile for (10) interference; dots: 
observed profile for (11) interference. 
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size (and/or the perfection) of the graphitic layers and 
the orientation of the layer planes in the sense that the 
larger and more perfect layers tend to be more perfectly 
aligned parallel to the fiber axis. An investigation of 
this effect is facilitated by the use of approximations 
similar to equation (14) considering Jh to be a function 
of s and ~0. A detailed study of this effect is in progress. 

We are indebted to Mr J.P.Pauwels for technical 
assistance, to the staff of our Computer Centre for the 
numerical results, and to Dr R. Bacon for supplying 
the sample of carbon fibre. 
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Application de la Th6orie Dynamique de la Diffraction X a l'l~tude de la Diffusion du Bore 
et du Phosphore dans les Cristaux de Silieium 

PAR JACQUES BURGEAT 
DOpartement Physique-Chimie-Mdtallurgie, Centre National d'Etudes 

des T~lOcommunications, 92 Issy-les-Moulineaux, France 

El" DANIEL TAUPIN 
Centre de Calcul Num~rique, Laboratoire de Physique Th~orique et Hautes Energies, 

Facultd des Sciences, 91 Orsay, France 

(Refu le 8 mai 1967) 

The dynamical theory of X-ray scattering of distorted crystals is applied to the case of silicon crystals 
in which boron has been diffused. Double spectrometer reflexion profiles can thus be theoretically 
computed. Agreement with the experimental profiles is good except that computed junction depths 
are higher than the values measured by metallographic methods. On the other hand, the present method 
leads to a reliable determination of the diffusion coefficient of boron in the case of relatively high con- 
centrations. 

On sait que la pr6sence de bore diffus6 dans les cristaux 
de silicium cr6e une contraction du r6seau cristallin 
(Horn, 1955) variable avec la profondeur, modifie le 
profil des raies de diffraction X et le pouvoir r6flecteur 
des cristaux diffus6s (Burgeat, 1963, 1965). Cette modi- 
fication de la diffraction X se retrouve avec la diffusion 
du phosphore dans le silicium. 

L'6tude exp6rimentale des profils de raies sur les 
6chantillons diffus6s est r6alis6e au diffractom&re 
double dans la disposition (n, -n) (James, 1948), le 
premier cristal &ant aussi parfait que possible. La 
diffusion du bore est r6alis6e dans des cristaux de sili- 
cium de type N (dop6s au phosphore) et la profondeur 
de p~n&ration de l'impuret6 diffus6e est rep6r6e par 
l'6paisseur de la couche invers6e ou profondeur de 
jonction. 

On admettra pour l'6tude th6orique du profil de raie 
obtenue (Burgeat, 1965), que l'impuret6 diffus6e (bore 
ou phosphore) provoque une contraction du r6seau 
cristallin ~t priori isotrope et proportionelle/t leur con- 

centration (loi de V6gard). Dans le cas pr6sent ces 
impuret6s sont concentr6es au voisinage de la surface 
et tendent par cons6quent ~t donner ~t l'6chantillon une 
forme concave (Queisser, 1961). En pratique l'6paisseur 
de l'6chantillon est tr~s grande (1 ~t 2 ram) devant celle 
de la couche diffus6e et la raideur de l'ensemble est 
telle qu'aux temp6ratures de diffusion il y a cr6ation 
de dislocations parallbles ~t la surface (Prussin, 1961). 

Du point de vue des rayons X (nous sommes dans 
le cas de Bragg sym&rique - r6flexion 400) tout se passe 
comme si nous avions un cristal dont les plans (400) 
restent parall~les et plans, mais dont l'intervalle r6ti- 
culaire dHest  fonction de la distance z h la surface. 

La propagation des rayons X (au voisinage de la 
condition de Bragg) dans un tel cristal a d6j& 6t6 6tudi6e 
(Taupin, 1964); elle est r6gie par le syst~me diff6rentiel 
suivant (11.6.3): 

2 dDn 
i ~ yH = ~'oDH + ~HDo -- O~HDH 

lr - -az -  
(1) 


